USN

Fifth Semester B.E. Degree Examination, June/July 2013 Fundamental of CMOS VLSI

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
2. Missing data may be assumed suitably.

PART - A

- 1 a. Explain briefly the nMOS enhancement mode transistor action with neat sketches. (06 Marks)
 - b. With the help of cross-sectional schematic, explain the various steps involved in n-well CMOS fabrication process. (08 Marks)
 - c. Define noise margin. Calculate the noise margins for the transfer characteristic of typical inverter, shown in Fig. Q.1(c). (06 Marks)

- Fig.Q.1(c)
- 2 a. Explain briefly the circuit operation of a basic differential inverter and a Tristate inverter.

 (06 Marks)
 - b. Draw the circuit diagram, mono chrome stick diagram and mask layout of p-well CMOS inverter. (08 Marks)
 - c. Distinguish burried and butting contacts with suitable diagrams. (06 Marks)
- 3 a. Draw the circuit diagram and monochrome stick diagram for two input CMOS NOR gate.
 (06 Marks)
 - b. What do you mean by pre-charge and evaluate modes in CMOS dynamic logic? Explain.
 (06 Marks)
 - c. What are single rail and dual rail networks? Explain how cascade voltage switch logic (CVSL) may be used to obtain dual-rail logic gates. (08 Marks)
- a. Calculate the area capacitance values associated with the following structure, having different layers as shown in Fig.Q.4(a) (relative 'C' value for polysilicon-to-substrate = $0.1 \text{ pf} \times 10^{-4}/\mu\text{m}^2$ and metal 1-to-substrate = $0.075 \text{ pf} \times 10^{-4}/\mu\text{m}^2$). (06 Marks)

Fig.Q.4(a)

- Prove how the delay associated with CMOS inverter pair is independent of input transitions. (06 Marks)
- Write the scale factors for the following parameters:
 - Gate capacitance (Cg) i)
 - Maximum operating frequency (f_o) ii)
 - Current density (J) iii)
 - Power speed product (P_T).

(08 Marks)

(06 Marks)

PART - B

5	a.	Discuss the architectural issues in the design of VLSI sub system.	(06 Marks)
	b.	Implement a 4-way multiplexer using nMOS switches.	(06 Marks)
	c.	Explain structured design approach for a parity generator.	(08 Marks)

- 6 Realize a 4×4 barrel shifter using MOS switches and explain in brief its salient features.
 - Explain the various steps involved in designing a 4-bit adder. (08 Marks)
 - b.
 - Discuss on a serial-parallel multiplier approach used in adder. c. (06 Marks)
- 7 What are the system timing considerations? Explain. a. (06 Marks)
 - Explain the circuit operation of a three-transistor dynamic RAM cell. b. (07 Marks)
 - Show the functioning of a pseudo-static memory cell. (07 Marks)
- 8 Write short notes on the following:
 - a. Input output pads.
 - b. Controllability and observability.
 - Boundary scan test (BST).
 - d. Built-in-self-test (BIST). (20 Marks)